9+ Polar Moment Of Inertia Formulas [2025]

Second polar moment of inertia formulas of different sections

The polar moment of inertia, quantifies an object/section’s resistance to rotational motion about a specific axis.

This property plays an important role in structural and mechanical engineering, ranging from bolted steel connections to complex machinery analysis.

Every shape has a different polar moment of inertia. In this blog post, we’ll show the formulas for different sections, so you don’t have to calculate them yourself.

Overview of polar moment of inertia formulas of different sections.
Overview of polar moment of inertia formulas of different sections.

Let’s get started. πŸš€πŸš€

What Is The Polar Moment Of Inertia?

The second polar moment of inertia, often denoted as Ip or J, is a measure of an object’s resistance to torsional, or twisting, deformation around an axis perpendicular to its longitudinal axis.

It is commonly used in engineering and mechanics to analyse and design structures, components and connections subjected to torsional loads, such as shafts, steel tubes and bolted connections.

Formula Of Polar Moment Of Inertia

The formula for the 2nd polar moment of inertia is the following:

$$I_p = \int \int_{A}^{} r^2 \,dA $$

With,

dAInfinitesimal element
rRadial distance to element dA

I know, I know, we all don’t like integrals. They are just too complicated, right?

So, the formula for the 2nd polar moment of inertia that we all understand better is:

$$I_p = I_y + I_z$$

Where

IyMoment of inertia strong axis
IzMoment of inertia weak axis

Now, the formula has become a lot easier. You can check out our blog post about moment of inertial formulas to calculate Iy and Iz quicker.

1. I- and H Section

Polar moment of inertia

$I_p = \frac{w \cdot h^3}{12} – \frac{(w-t_w) \cdot (h-2\cdot t_f)^3}{12}$
$ + \frac{(h-2\cdot t_f) \cdot t_w^3}{12} + \frac{2\cdot t_f \cdot w^3}{12}$

Example calculation

$h$ = 300mm, $b$ = 150mm, $t_f$ = 10mm, $t_s$ = 7m

$I_p = \frac{w \cdot h^3}{12} – \frac{(w-t_w) \cdot (h-2\cdot t_f)^3}{12} + \frac{(h-2\cdot t_f) \cdot t_w^3}{12} + \frac{2\cdot t_f \cdot w^3}{12} $

$I_p = \frac{150mm \cdot (300mm)^3}{12} – \frac{(150mm-7mm) \cdot (300mm-2\cdot 10mm)^3}{12} \frac{(300mm-2\cdot 10mm) \cdot (7mm)^3}{12} + \frac{2\cdot 10mm \cdot (7mm)^3}{12} $

$I_p = 7.59 \cdot 10^7 mm^4$

2. Square Section

Polar moment of inertia

$I_p = \frac{w^4}{6} = 0.1667 w^4$

Example calculation

w = 120 mm

$J = \frac{w^4}{6} = \frac{(120mm)^4}{6} = 3.46 \cdot 10^7 mm^4$

3. Rectangular Section

Polar moment of inertia

$I_p = \frac{wh (w^2 + h^2)}{12}$

Example calculation

w = 120 mm, h = 240mm

$J = \frac{wh (w^2 + h^2)}{12} = \frac{120mm \cdot 240mm \cdot ((120mm)^2 + (240mm)^2)}{12} = 1.73 \cdot 10^8 mm^4$

4. Circle/ Circular Section

Polar moment of inertia

$I_p = \frac{\pi \dot D^4}{32}$

Example calculation

D = 200 mm

$J = \frac{\pi \dot D^4}{32} = \frac{\pi \dot (200mm)^4}{32} = 1.57 \cdot 10^8 mm^4$

5. Circular Tube Section

Polar moment of inertia

$I_p = \frac{\pi}{32} \cdot (D^4 – d^4)$

Kreisrohr querschnitt mit abmessungen fΓΌr die berechnung des TrΓ€gheitsmoments

Example calculation

D = 200 mm, d = 180mm

$J = \frac{\pi}{32} \cdot (D^4 – d^4) = \frac{\pi}{32} \cdot ((200mm)^4 – (180mm)^4) = 5.4 \cdot 10^7 mm^4$

6. Circular Section With Square Cutout

Polar moment of inertia

$I_p = \frac{\pi \cdot D^4}{32} – \frac{w^4}{6}$

Example calculation

D = 200 mm, w = 100 mm

$J = \frac{\pi \cdot D^4}{32} – \frac{w^4}{6} = \frac{\pi \cdot (200mm)^4}{32} – \frac{(100mm)^4}{6} = 1.4 \cdot 10^8 mm^4$

7. Hexagon Section

Polar moment of inertia

$I_p = \frac{5 \cdot \sqrt{3}}{8} \cdot s^4$

Example calculation

D = 200 mm, w = 100 mm

$J = \frac{5 \cdot \sqrt{3}}{8} \cdot s^4 = \frac{5 \cdot \sqrt{3}}{8} \cdot (100mm)^4 = 1.08 \cdot 10^8 mm^4$

8. Hollow Rectangular Section

Polar moment of inertia

$I_p = \frac{WH (W^2 + H^2)}{12} – \frac{wh (w^2 + h^2)}{12}$

Example calculation

H = 240 mm, W = 120 mm, h = 200 mm, w = 90 mm

$J = \frac{WH (W^2 + H^2)}{12} – \frac{wh (w^2 + h^2)}{12} = \frac{120mm \cdot 240mm ((120mm)^2 + (240mm)^2)}{12} – \frac{90mm \cdot 200mm ((90mm)^2 + (200mm)^2)}{12} = 1.0 \cdot 10^8 mm^4$

9. Triangular Section

Polar moment of inertia

$I_p = \frac{\sqrt{3}}{48} \cdot s^4$

Example calculation

s = 100 mm

$I_p = \frac{\sqrt{3}}{48} \cdot s^4 = \frac{\sqrt{3}}{48} \cdot (100mm)^4 = 3.6 \cdot 10^6 mm^4$

10. Circular Section With Socket Head Cutout

Polar moment of inertia

$I_p = \frac{\pi D^4}{32} – \frac{5 \sqrt{3}}{8} \cdot s^4$

Example calculation

D = 300 mm, s = 100 mm

$I_p = \frac{\pi D^4}{32} – \frac{5 \sqrt{3}}{8} \cdot s^4$

$I_p = \frac{\pi (300mm)^4}{32} – \frac{5 \sqrt{3}}{8} \cdot (100mm)^4$

$I_p = 6.9 \cdot 10^8 mm^4$

Conclusion

The polar moment of inertia is an important parameter in structural design. Therefore, it’s recommendable to know how to calculate it for different cross-sections. You do that by adding Iy and Iz together.

In the following blog posts, we show step-by-step, how to calculate these moments of inertias.

If you are new to structural design, then check out our design tutorials about other structural elements. πŸ‘‡πŸ‘‡

Do you miss any 2nd polar moment of inertia formula for any shape or cross-section that we forgot in this article? Let us know in the comments. ✍️✍️

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *