Rigid Frame Structure: Moment formulas – Different loads

Rigid frame structure bending moment formulas and moment diagrams due to different loads line load and point load

Calculating bending moments in structural elements – in this case rigid frames with two fixed supports – for different loading scenarios, is probably one of the things in structural engineering that we do throughout our studies and also careers later on.

While it’s very important to know how to derive and calculate reaction and internal forces, the further we get in our studies, the more we can use frame moment formulas.

In earlier articles, we already covered moment and shear force formulas and diagrams for:

In this article, we’ll show, the most important and easiest Moment formulas for frames with 2 fixed supports due to different loading scenarios like UDL line loadspoint loads and external moments.

Before we start, some boundary conditions are set, such as that

  • the 2 columns have the same Moment of inertia $I_1$ and a length of h
  • the top beam has the Moment of inertia $I_2$ and a length of l
  • the parameter k is defined as $\frac{I_2}{I_1} \cdot \frac{h}{l}$.
Geometrical and stiffness properties of a rigid frame with moment of inertia and lengths
Geometrical properties of Rigid Frame.

1. Uniformly distributed line load (UDL) on beam

Shows a Rigid frame moment diagram due to a line load UDL on top beam and internal forces formulas
Bending moment diagram | rigid frame | uniformly distributed line load (UDL) on beam.

Moment (support a & d)

$M_a = M_d = \frac{q \cdot l^2}{12\cdot (k+2)}$

Moment (b & c)

$M_b = M_c = -\frac{q \cdot l^2}{6\cdot (k+2)}$

2. Uniformly distributed load (UDL) on both columns

Shows a Rigid frame moment diagram due to line loads UDL on both columns and internal forces formulas
Bending moment diagram | 2-hinge frame | uniformly distributed line load (UDL) on both columns.

Moment (support a & d)

$M_a = M_d = – \frac{1}{12} \cdot q \cdot h^2 \cdot \frac{k+3}{k+2}$

Moment (b & c)

$M_b = M_c = – \frac{1}{12} \cdot q \cdot h^2 \cdot \frac{k}{k+2}$

3. Uniformly distributed load (UDL) on 1 column

Shows a Rigid frame moment diagram due to a line load UDL on one column and internal forces formulas
Bending moment diagram | rigid frame | uniformly distributed line load (UDL) on 1 column.

Moment (support a)

$M_a = \frac{1}{24} \cdot q \cdot h^2 \cdot (\frac{5k+9}{k+2}-\frac{12k}{6k+1})$

Moment b

$M_b = – \frac{1}{24} \cdot q \cdot h^2 \cdot (\frac{12k}{6k+1}+\frac{k}{k+2})$

Moment c

$M_c = \frac{1}{24} \cdot q \cdot h^2 \cdot (\frac{12k}{6k+1}-\frac{k}{k+2})$

Moment (support d)

$M_d = – \frac{1}{24} \cdot q \cdot h^2 \cdot (12 – \frac{5k+9}{k+2} – \frac{12k}{6k+1})$

4. Point load on beam

Shows a rigid frame moment diagram due to a point load on the top beam and internal forces formulas
Bending moment diagram | rigid frame | Point load on beam.

Moment (support a)

$M_a = \frac{Q\cdot a \cdot b}{2\cdot l} \cdot \frac{5k-1+2\cdot(k+2)\cdot \frac{a}{l}}{(k+2)\cdot(6k+1)}$

Moment b

$M_b = – \frac{Q\cdot a \cdot b}{2\cdot l} \cdot \frac{13k+4-2\cdot(k+2)\cdot \frac{a}{l}}{(k+2)\cdot(6k+1)}$

Moment c

$M_c = – \frac{Q\cdot a \cdot b}{2\cdot l} \cdot \frac{11k+2\cdot(k+2)\cdot \frac{a}{l}}{(k+2)\cdot(6k+1)}$

Moment (support d)

$M_d = \frac{Q\cdot a \cdot b}{2\cdot l} \cdot \frac{7k+3-2\cdot(k+2)\cdot \frac{a}{l}}{(k+2)\cdot(6k+1)}$

5. Point load on Column

Shows a Rigid frame moment diagram due to a point load on one column and internal forces formulas
Bending moment diagram | 2-hinge frame | Point load on 1 column.

Moment (support a & d)

$M_a = -M_d = – \frac{1}{2} \cdot Q \cdot h \cdot \frac{3k+1}{6k+1}$

Moment (b & c)

$M_b = -M_c = \frac{1}{2} \cdot Q \cdot h \cdot \frac{3k}{6k+1}$


If you are new to structural design, then check out our design tutorials where you can learn how to use the calculated bending moments and shear forces to design structural elements such as

Do you miss any formulas for this rigid frame that we forgot in this article? Let us know in the comments✍️

Similar Posts