4 Span Continuous Beam – Moment And Shear Force Formulas Due To Different Loads

Moment & Shear Force Formulas For 4-span continuous beams due to different loads

Calculating bending moments and shear forces in beams – in this case 4 span continuous beams – for different loading scenarios, is probably one of the things in structural engineering that we do throughout our studies and also careers later on.

After having covered the moment and shear formulas for simply supported and cantilever beams, in this article, we’ll show, the most important and easiest formulas for continuous beams due to different loading scenarios like UDL line loads and point loads.

The formulas will be supported by images showing the moment and shear force diagrams.

Now, before we get started, always remember that the unit of the bending moment is Kilonewton meter [$kNm$] and Kilonewton [$kN$] for the shear forces when in Europe.

But now, let’s get started.

1. Uniformly distributed line load (UDL) – 4 Span continuous beam

4 span continuous beam moment formulas udl line load bending moment and shear force linear and parabolic
Bending moment and shear force diagram | Continuous beam with 4 equal spans | Uniformly distributed line load (UDL).

Max positive bending moment ($x=0.393 \cdot l$)

$M_{max} = 0.077 \cdot q \cdot l^2$

Positive bending moment  

$M_{bc} = M_{cd} = 0.036 \cdot q \cdot l^2$

Max negative bending moment (at support b & d)

$M_{b} = M_{d} = -0.107 \cdot q \cdot l^2$

Negative bending moment (at support c)

$M_{c} = -0.071 \cdot q \cdot l^2$

Shear force (at support a & e)

$V_{a} = -V_{e} = 0.393 \cdot q \cdot  l$

Shear force (at support b & d)

$V_{b(-)} = -V_{d(+)} = -0.536 \cdot q \cdot l$

$V_{b(+)} = -V_{d(-)} = 0.607 \cdot q \cdot l$

Shear force (at support c)

$V_{c(-)} = V_{c(+)} = 0.464 \cdot q \cdot  l$

Reaction force support a & e

$R_a = R_e = 0.393 \cdot q \cdot l$

Reaction force support b & d

$R_b = R_d = 1.143 \cdot q \cdot l$

Reaction force support c

$R_c = 0.929 \cdot q \cdot l$

2. Uniformly distributed load (UDL) on 2 center spans – 4 Span continuous beam

4 span continuous beam moment formulas udl line load in center bending moment and shear force linear and parabolic
Bending moment and shear force diagram | Continuous beam with 4 equal spans | Uniformly distributed line load (UDL) on two center spans.

Positive bending moments

$M_{bc} = M_{cd} = 0.056 \cdot q \cdot l^2$

Max negative bending moment (at support c)

$M_{c} = -0.107 \cdot q \cdot l^2$

Negative bending moment (at support b & d)

$M_{b} = M_{d} = -0.036 \cdot q \cdot l^2$

Reaction force support a & e

$R_a = R_e = -0.036 \cdot q \cdot l$

Reaction force support b & d

$R_b = R_d = 0.465 \cdot q \cdot l$

Reaction force support c

$R_c = 1.143 \cdot q \cdot l$

3. Uniformly distributed line load (UDL) on 1st & 3rd span – 4 Span continuous beam

4 span continuous beam moment formulas udl line load in first and third span bending moment and shear force linear and parabolic
Bending moment and shear force diagram | Continuous beam with 4 equal spans | Uniformly distributed line load (UDL) on 1st and 3rd spans.

Positive bending moment $M_{ab}$

$M_{ab} = 0.1 \cdot q \cdot l^2$

Positive bending moment $M_{cd}$

$M_{cd} = 0.081 \cdot q \cdot l^2$

Negative bending moment (at support b)

$M_{b} = -0.054 \cdot q \cdot l^2$

Negative bending moment (at support c)

$M_{c} = -0.036 \cdot q \cdot l^2$

Negative bending moment (at support d)

$M_{d} = -0.054 \cdot q \cdot l^2$

Shear force (at support a)

$V_{a} = 0.446 \cdot q \cdot l$

Shear force (at support b)

$V_{b(-)} = -0.0554 \cdot q \cdot l$

$V_{b(+)} =  0.018 \cdot q \cdot l$

Shear force (at support c)

$V_{c} =  0.482 \cdot q \cdot l$

Shear force (at support d)

$V_{d(-)} = -0.518 \cdot q \cdot l$

Shear force (at support e)

$V_{d} = 0.054 \cdot q \cdot l$

Reaction force support a & c

$R_a = R_c = 0.446 \cdot q \cdot l$

Reaction force support b & d

$R_b = R_d = 0.572 \cdot q \cdot l$

Reaction force support e

$R_e = -0.054 \cdot q \cdot l$

4. Uniformly distributed line load (UDL) on outer spans + 2nd span – 4 Span continuous beam

4 span continuous beam moment formulas udl line load in outer and second span bending moment and shear force linear and parabolic
Bending moment and shear force diagram | Continuous beam with 4 equal spans | Uniformly distributed line load (UDL) on outer spans & 2nd span.

Positive bending moments

$M_{ab} = 0.071 \cdot q \cdot l^2$

$M_{bc} = 0.061 \cdot q \cdot l^2$

$M_{de} = 0.098 \cdot q \cdot l^2$

Negative bending moments

$M_{b} = -0.121 \cdot q \cdot l^2$

$M_{c} = -0.018 \cdot q \cdot l^2$

$M_{d} = -0.058 \cdot q \cdot l^2$

Shear forces

$V_{a} = 0.38 \cdot q \cdot l$

$V_{b(-)} = -0.62 \cdot q \cdot l$

$V_{b(+)} =  0.603 \cdot q \cdot l$

$V_{c} =  -0.397 \cdot q \cdot l$

$V_{d(-)} = -0.04 \cdot q \cdot l$

$V_{d(+)} = 0.558 \cdot q \cdot l$

$V_{e} = 0.442 \cdot q \cdot l$

Reaction force support a

$R_a = 0.38 \cdot q \cdot l$

Reaction force support b

$R_b = 1.223 \cdot q \cdot l$

Reaction force support c

$R_c = 0.357 \cdot q \cdot l$

Reaction force support d

$R_d = 0.598 \cdot q \cdot l$

Reaction force support e

$R_e = 0.442 \cdot q \cdot l$

5. Uniformly distributed line load (UDL) on 1st span – 4 Span continuous beam

4 span continuous beam moment formulas udl line load first span bending moment and shear force linear and parabolic
Bending moment and shear force diagram | Continuous beam with 4 equal spans | Uniformly distributed line load (UDL) on 1st span.

Positive bending moments

$M_{ab} = 0.093 \cdot q \cdot l^2$

$M_{c} = 0.018 \cdot q \cdot l^2$

Negative bending moments

$M_{b} = -0.067 \cdot q \cdot l^2$

$M_{d} = -0.004 \cdot q \cdot l^2$

Reaction forces

$R_a = 0.433 \cdot q \cdot l$

$R_b = 0.652 \cdot q \cdot l$

$R_c = -0.107 \cdot q \cdot l$

$R_d = 0.027 \cdot q \cdot l$

$R_e = -0.004 \cdot q \cdot l$


If you are new to structural design, then check out our design tutorials where you can learn how to use the calculated bending moments and shear forces to design structural elements such as

Do you miss any Moment or shear force formulas for the 4 span continuous beam that we forgot in this article? Let us know in the comments✍️.

Similar Posts